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Abstract— In this paper, we introduce some hybrid iterative schemes (Picard-Ishikawa, Picard-AK, 

Picard-S hybrid iterative schemes) in line with Picard-Mann scheme and establish some strong convergence 

results for generalized contractive-like inequality operators introduced by Imoru and Olatinwo [10] in a 

Banach space. We also compare the convergence speed of CR, SP, Picard-Mann hybrid iterative schemes 

with our results (Picard-S, Picard-AK, Picard-Ishikawa hybrid iterative shemes). It is shown that one of 

our results (Picard-S iterative scheme) converges faster than others (CR, SP, Picard-AK, Picard- 

Ishikawa, Picard-Mann hybrid iterative schemes) for increasing functions, while the Picard-AK scheme is 

faster than CR scheme for decreasing function. Our results generalize and extend multitude of results in 

the literature, including the results of Khan [13].  

 
Keywords— Strong convergence results, hybrid iterative schemes, rate of convergence, contractive-like 

operators. 

 
1. Introduction and Preliminary Definitions 

 
Fixed point iterative schemes are designed to be applied in solving equations arising in physical formulation 

but there is no systematic study of numerical aspects of these iterative schemes. In computational 

mathematics, it is of vital interest to know which of the given iterative procedures converge faster to a 

desired solution, commonly known as rate of convergence. We will now consider some of these schemes 

and compare their rate of convergence. 

 

Let   be a metric space and  be a selfmap of  Assume that  is the set 

of fixed points of . For , the sequence  defined by 

 

  (1) 

 
Is called the Picard iterative scheme. 

 
We shall also need the following iterative schemes which appear in [15], [11], [16], [1], [19], [6], and [13] 

respectively to establish our results. 

 

Let  be a Banach space and  a self-map of  For , the sequence  

 

  (2) 

 

Where    is  a  real sequence  in  [0,1]  such  that    is called the Mann iterative scheme 

[15]. 

 
If in (2), we have the Picard iterative scheme (1). 

For  the sequence defined by 
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Where   are real sequences in [0, 1] such that  is called Ishikawa 

iterative scheme [11]. 

Observe that if  for each , then the Ishikawa iterative scheme (3) reduces to the Mann iterative 

scheme (2). 

For the sequence defined by 

(3) 

 
 

 
Where are real sequences in [0, 1] such that  is called Noor 

iterative (or three-step) scheme [16]. 

 

Also observe that if  for each , then the Noor iteration process (3) reduces to the Ishikawa 

iterative scheme (2). 

(4) 

 

Rhoades [21], perhaps for the first time used computer programs to compare the rate of convergence 

Mann and Ishikawa iterative procedures. He illustrated the difference in the rate of convergence for 

increasing and decreasing functions through examples. 

In 2007, Agarwal, Regan and Sahu introduced the following iterative scheme called S -iterative scheme 

[1] As: For the sequence defined by 
 

(5) 

Where are real sequences in [0, 1] such that 

In [19], Phuengrattana and Suantai defined the SP iterative scheme and proved that this scheme is 

equivalent to and faster than Mann, Ishikawa and Noor iterative schemes for increasing functions. The 

Scheme is defined as follows: For defined by 

 

 
 

Where   are real sequences in [0,1] such that 

 Recently, Chugh and Kumar [7] introduced the following CR iterative 

scheme:  

 
(6) 

 
 

 

 

 

 

Where are real sequences in [0,1] such that                                             (7) 

In 2013, Khan [13], introduced the following Picard-Mann hybrid iterative scheme for a single non 

expansive mapping  For any initial point the sequence is defined by 
 

(8) 

Where is a real sequence in [0,1]. 

He showed that the new scheme (Picard-Mann scheme (8)) converges faster than all of Picard (1), Mann  

(2) And Ishikawa (3) iterative schemes in the sense of Berinde [5] for contractions. He also proved strong 

convergence and weak convergence theorems with the help of his iterative process (8) for the class of non-

expansive mappings in general Banach spaces and apply it to obtain a result in uniformly convex Banach 

spaces. 

Motivated by the work of Khan [13], we introduce the following hybrid iterative schemes and prove their 
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Strong convergence results for contractive-like operators [10] in Banach spaces. Also, we investigate 

their rate of convergence for this class of operators.  

For any initial point the sequence is defined by: 
 
 

(9) 

Where are real sequences in [0, 1] such that  is called Picard-

Ishikawa hybrid iterative scheme. 

 
For any initial point the sequence is defined by: 

 
 

(10) 

Where are real sequences in [0, 1] such that     is called Picard-AK hybrid 

iterative scheme. 

 
For any initial point the sequence is defined by  

   
(11) 

where 

Iterative scheme. 

are real sequences in [0,1] such that  is called Picard-S hybrid 

 
Several generalizations of the Banach fixed point theorem have been proved to date, (for example see [5], 

[6], [12], [13], [18] and [24]). One of the most commonly studied generalization hitherto is the one proved 

by Zamfirescu [26] in 1972, which is stated as thus: 

 

Theorem 1.1: Let  be a complete metric space and  a Zamfirescu operator satisfying 
 

 

. Then, has a unique fixed point and the Picard iteration (1) converges to for any 
 
 

Observe that in a Banach space setting, condition (12) implies  

(13) 
 

Several papers have been written on the Zamfirescu operators (13),  for example (see [5], [8], [20], [26]). 

The most commonly used methods of approximating the fixed points of the Zamfirescu operators are 

Picard, Mann [15], Ishikawa [11] and Noor [16] iterative schemes. Rhoades [21, 22] used the Zamfirescu 

contraction condition (13) to obtain some convergence results for Mann and Ishikawa iterative schemes in 

a uniformly Banach space. Berinde [5] extended the results of the author [21, 22] to arbitrary Banach 

space for the same fixed point iteration procedures. Rafiq [20], proved the convergence of Noor iterative 

scheme using the Zamfirescu operators defined by (13). 

 
Osilike [18] proved several stability results which are generalizations and extensions of most  of  the results 

of Rhoades [22] using the following contractive definition: for each there exist 

where 

. 
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And  such that 

 
(14) 

 

In 2003, Imoru and Olatinwo [10] proved some stability results using the following general contractive 

definition: 
 

For each     there exist     and a monotone increasing function     with  
such that 

(15) 
 

 

2. Main Results 

Theorem 2.1: Let    be a nonempty closed convex subset of an arbitrary Banach space   and be 

a selfmap of satisfying the condition 

(16) 

for each   and a  monotone  increasing function  with  . For 

let be the Picard-Ishikawa hybrid iterative scheme defined by (9), where 

are real sequences in Then 

(i) defined by (16) has a unique fixed point . 

(ii) the Picard-Ishikawa hybrid iterative scheme defined by (9) converges strongly to  of  . 

 
Proof: 

(i)  We shall first  establish  that the mapping  satisfying the contractive condition (16) has a unique fixed 

point. 

 
Suppose there exist and that with then 

 

 
Thus, 

(17) 

 
(18) 

Since  then and  Also, since norm is nonnegative we have that 

That is,  (say). Thus, has a unique fixed point . 

Next, we will establish that  That is, we show that the Picard-Ishikawa hybrid iterative 

scheme (9) converges strongly to of 
 

Proof: 

In view of (16) and (9), we have 
 
 

(19) 
 

 

 

(20) 
 

 

 

(21) 
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of 

Substituting (21) in (18), we have 

 
Substituting (22) in (17), we have 

 
(22) 

 

(23) 

Using the fact that , and , it result that . 

That is   converges strongly to P. This ends the proof. 

 
Remark 2.2: Theorem 2.1 generalizes several results in literature by considering a larger class  of 

inequality operators (or contractive-like operators) (16). 

 
Theorem 2.1. Leads to the following corollary:  

 

Corollary 2.3: Let    be a nonempty closed convex subset of an arbitrary Banach space   and 

be a self-map of satisfying the condition 

(24) 

for each   and  a  monotone  increasing  function  with  . For 

let and  be the Picard-Mann hybrid and Picard iterative schemes defined by 

(8) and (1) respectively, where is a real sequence in Then 

(i) defined by (24) has a unique fixed point ; 

(ii) the Picard-Mann hybrid (10) iterative scheme converges strongly to  ; 

(iii) the Picard (1) iterative scheme converges strongly  to . 

 

Theorem 2.4: Let    be a nonempty closed convex subset of an arbitrary Banach space   and be 

a selfmap of satisfying the condition 

(25) 

for each  and a  monotone  increasing function with . For 

  let be the Picard-AK hybrid iterative scheme defined by (??), where 

Are real sequences in then 

(i) defined by (25) has a unique fixed point . 

(ii) The Picard-AK hybrid iterative scheme (10) converges strongly to  of  . 

 
Proof: 

(i) Trivial (the method of proof is similar to that in theorem 2.1). 

(ii) Next,  we  shall establish that That is, we show that the Picard-AK hybrid iterative 

scheme (10) converges strongly to 
 

Proof: 

In view of (25) and (10), we have 
 
 

(26) 
 

 

 

 

(27) 
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with . 

 
of 

 

(28) 

Substituting (28) in (27), we have 
 

(29) 

Substituting (27) in (26), we have 
 

(30) 

Using the fact that , and , it result that . 

That is,   converges strongly to p. This ends the proof. 

 
Theorem 2.4 leads to the following corollary:  

 

Corollary 2.5.  Let    be a normed linear space,    be a self-map of    satisfying the 

condition 

(31) 

For each   and  a monotone increasing function with  . For 

let and  be the Picard-Mann hybrid and Picard iterative schemes defined by 

(8) and (1) respectively, where is a real sequence in Then 

(i) defined by (31) has a unique fixed point ; 

(ii) the Picard-Mann hybrid iterative scheme (8) converges strongly to . 

(iii)the  Picard iterative scheme defined by (1) converges strongly  to . 

 

Theorem 2.6: Let    be  a  nonempty  closed  convex subset of an arbitrary Banach space    and 

be a selfmap of satisfying the condition 

 
for each and a monotone increasing function 

(32) 

For 

 let be the Picard-S hybrid iterative scheme defined by  (11), where are 

real sequences in  Then 

(i) defined by (32) has a unique fixed point . 

(ii) The Picard-S hybrid iterative scheme (11) converges strongly to  of . 

 
Proof: 

(i) Trivial (the method of proof is similar to that in theorem (2.1)). 

(ii) Next,  we  shall establish that That is, we show that the Picard-S hybrid iterative 

scheme (11) converges strongly to 
 

Proof: 

In view of (32) and (11), we have 
 
 

(33) 
 

 

 

 

(34) 
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(35) 
 

Substituting (35) in (34), we have 
 

 
Substituting (36) in (33), we have 

(36) 

 
(37) 

Using the fact that , and , it result that . 

That is, converges strongly to p. This ends the proof. 

 

Following our method of proof, we now state the estimates of SP, CR, Noor, Ishikawa, Picard -Mann 

hybrid, Mann and Picard iterative schemes. 
 

SP-iterative scheme: 

                 (38) 

 
CR-iterative scheme: 

 

(39) 
 

Noor iterative scheme: 
 

(40) 
 

S- Iterative scheme: 

 
 

Ishikawa- iterative scheme: 

 
 

Picard-Mann hybrid iterative scheme: 

 
 

Mann iterative scheme: 

 
 

Picard iterative scheme: 

 

 
(41) 

 
 

(42) 

 
 

(43) 

 
 

(44) 

 
 

(45) 
 

Remark 2.7. 

1. It already shown in [8] that CR iterative scheme converges faster than SP, S, Picard, Noor, Ishikawa 

and Mann Iterative schemes for increasing functions. 

2. SP iterative scheme converges faster than CR, Mann, Noor, Ishikawa iterative schemes for decreasing 

functions. Picard and S iterations does not converge for decreasing functions. 

3. We need to show if any of our new schemes perform better than the existing ones (stated in (1) and (2) 

above) for increasing or decreasing functions. 

 
3. Numerical Example 

In this section, we use known examples to compare our new iterative schemes (with higher precision, that  
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point 

Is 12 decimal places) with others (CR, SP, Picard-Mann and Picard iterative schemes) with the help 

computer programs in MATHEMATICA 10.2. The results are shown in Tables 1-3, by taking initial 

approximation and       for all the iterative 

schemes. 

 
3.1. Example of Increasing Function 

Let be defined by . Then is an increasing function. The comparison of 

These iterative schemes to the fixed is shown in Table 1. 
 

3.2. Example of Decreasing Function 

Let  be defined by       Then     is a decreasing function. By 

taking the comparison of these iterative schemes to the fixed point p = 0.188347679972 is shown 

in Table 2. 

 

3.3. Example of Cubic Equation 

To find  the  root of the equation means to find the fixed point of the function  

as     can  be rewritten as  The comparison of convergence of these various 

iterative  schemes to the exact fixed  point p = 0.754877666247 of  is shown in Table 3. 

Table 1: Numerical Example for Increasing Functions 

 
n Picard-S Picard-AK Picard-Ishikawa Picard-Mann CR SP 

 0.800000000000 0.800000000000 0.800000000000 0.800000000000 0.800000000000 0.800000000000 
 0.994724335956 0.989107653287 0.981712510456 0.980046204397 0.985654249264 0.970029603170 
 0.999845672115 0.999371298582 0.998236300270 0.997868571194 0.998875289673 0.995357217378 
 0.999995473413 0.999963596112 0.999829084091 0.999770791148 0.999911279353 0.999277197126 
 0.999999867220 0.999997891708 0.999983429280 0.999975333764 0.999992998079 0.999887385271 
 0.999999996105 0.999999877899 0.999998393356 0.999997345347 0.999999447381 0.999982452208 
 0.999999999886 0.999999992929 0.999999844224 0.999999714296 0.999999956385 0.999997265626 
 0.999999999997 0.999999999590 0.999999984896 0.999999969251 0.999999996558 0.999999573917 
 1.000000000000 0.999999999976 0.999999998536 0.999999996691 0.999999999728 0.999999933606 
 - 0.999999999999 0.999999999854 0.999999999644 0.999999999979 0.999999989654 
 - 1.000000000000 0.999999999986 0.999999999962 0.999999999998 0.999999998388 
 - - 0.999999999999 0.999999999996 1.000000000000 0.999999999749 
 - - 1.000000000000 1.000000000000 - 0.999999999961 
 - - - - - 0.999999999994 
 - - - - - 0.999999999999 
 - - - - - 1.000000000000 

 

 

 

 

Table 2: Numerical Example for Decreasing Functions 

 
n Picard-S Picard-AK Picard-Ishikawa Picard-Mann CR SP 

 0.800000000000 0.800000000000 0.800000000000 0.800000000000 0.800000000000 0.800000000000 
 0.991661618055 0.038079720996 0.002903499306 0.002954193480 0.351281588128 0.230255307158 
 0.999220874028 0.154923342340 0.896804076419 0.032981993771 0.253839245926 0.188347619027 
 0.999301770329 0.188343056611 0.000966790483 0.063367134592 0.203435573050 0.188347679972 
 0.999302594693 0.188347680815 0.910211859607 0.099708260081 0.189400928181 - 



                                                                           ISSN: 2227-9956 

                                                               Volume 01, Issue 03, November, 2019 

 

9 
 

 0.999302603090 0.188347679972 0.000819059260 0.141220383659 0.188364553849 - 
 0.999302603175 - 0.911237009301 0.174799938713 0.188347880562 - 
 0.999302603176 - 0.000808619870 0.187104963671 0.188347682343 - 
 0.999302603176 - 0.911309463821 0.188316696412 0.188347680000 - 
 0.999302603176 - 0.000807886445 0.188347105317 0,188347679973 - 
 0.999302603176 - 0.911314554213 0.188347669406 0.188347679972 - 
 0.999302603176 - . 0.188347679778 - - 
 0.999302603176 - . 0.188347679969 - - 
 0.999302603176 - . 0.188347679972 - - 

 
 

Table 3: Numerical Example for Cubic Equations  

 
n Picard-S Picard-AK Picard-Ishikawa Picard-Mann CR SP 

 0.800000000000 0.800000000000 0.800000000000 0.800000000000 0.800000000000 0.800000000000 
 0.787843504237 0.754890266965 0.724951661134 0.755147653065 0.752481080032 0.754877149763 
 0.778999243130 0.754877635539 0.771764753274 0.754863567955 0.754947140157 0.754877666195 
 0.772549548615 0.754877666322 0.744382392790 0.754878407184 0.754875570498 0.754877666247 
 0.767836695872 0.754877666247 0.761032699719 0.754877627320 0.754877729395 - 
 0.764387522208 - 0.751140406670 0.754877668292 0.754877664344 - 
 0.761860128333 - 0.757100088396 0.754877666139 0.754877666304 - 
 0.760006476046 - 0.753539466597 0.754877666252 0.754877666245 - 
 0.758646031672 - 0.755677436606 0.754877666246 0.754877666247 - 
 0.757647057531 - 0.754397538130 0.754877666247 - - 

. . . . . . . 
 0.754877671270 - 0.754877666247 - - - 

. . . . . . . 
 0.754877666250 - - - - - 
 0.754877666249 - - - - - 
 0.754877666248* - - - - - 

 
4. Observations 

4.1. Increasing Function  

The Picard-S hybrid iterative scheme converges to a fixed point in 8 iterations, Picard-AK hybrid scheme 

converges in 10 iterations, Picard-Ishikawa hybrid scheme converges in 12 iterations, Picard-Mann hybrid 

scheme converges in 12 iterations, CR scheme converges in 11 iterations and SP scheme converges in 15 

iterations. 

 
4.2. Decreasing Function 

The Picard-S hybrid scheme shows a strange constant behaviour, Picard-AK hybrid scheme converges in 

5 iterations, Picard-Ishikawa hybrid scheme oscillates between 0 and 1 (it never converges) for as many 

iterations, Picard-Mann hybrid scheme converges in 13 iterations, CR scheme converges in 10 iterations 

and SP scheme converges in 3 iterations. 

 

4.3. Cubic Equation  

The Picard-S scheme converges to a different fixed point in 78 iterations, Picard-AK scheme converges in 

4 iterations, Picard-Ishikawa scheme converges in 52 iterations, Picard-Mann scheme converges in 9 

iterations, CR scheme converges in 8 iterations and SP scheme converges in 3 iterations.  

 
4.4. Remarks 

1. The order of decreasing rate of convergence in the case of increasing functions are: Picard-S, Picard- 

AK, Picard-Ishikawa, Picard-Mann, CR, SP iterative schemes. 

2. The order of decreasing rate of convergence in the case of decreasing functions are: SP, Picard-AK, 
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CR, Picard-Mann iterative schemes. 

3. The Picard-Ishikawa scheme does not converge for decreasing functions. 

4. The order of decreasing rate of convergence in the case of cubic equation with m=8 are: SP, Picard- 

AK, CR, Picard- Mann, Picard- Ishikawa, Picard-S iterative schemes. 

5. The number of steps increases as the precision is increased. 

 
5. Conclusions 

1.  Our Picard-S hybrid scheme is faster than the others (Picard-AK, CR, Picard-Ishikawa, Picard-Mann, 

SP iterative schemes) for increasing functions. 

2. SP scheme converges faster than Picard-AK, Picard-Mann and CR iterative schemes for decreasing 

functions. 

3. Picard-AK hybrid scheme converges faster than Picard-Mann hybrid scheme for decreasing functions. 

4. Picard-AK hybrid scheme converges faster than Picard-Mann and Picard-Ishikawa hybrid iterative 

schemes for the cubic equation considered. 

5. SP scheme converges faster than Picard-AK, Picard-Mann, CR schemes and Picard-Ishikawa schemes 

for the same cubic equation. 

6. The rate of convergence of these iterative schemes depend on the choice of  and  from 

Tables 1-3. 
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